

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

$$
\text { MODULE } 9
$$ Subtraction of Rational Numbers

Module 9: Subtraction of Rational Numbers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
algorithm	A procedure or description of steps that can be used to solve a problem.
compare	To find the difference between two sets.
computation	The action used to solve a problem.
decimal	A number based on powers of ten.
denominator	The term in a fraction that tells the number of equal parts in a whole.
difference	The result of subtracting one number from another number.
equal sign	The symbol that tells you that two sides of an equation are the same, balanced, or equal.
equivalent	Two numbers that have the same value.
fraction	A number representing part of a whole or set.
hundredths	The digit in representing $\frac{1}{100}$.
improper fraction	Any fraction in which the numerator is greater than the denominator.
least common multiple	The common multiple with the least value.
minuend	The number from which another number is subtracted.
minus sign	The symbol that tells you to subtract.
mixed number	A whole number and a fraction combined.
multiple	The product of a number and any integer.
numerator	The term in a fraction that tells how many parts of a fraction.
ones	The digit representing 1.
regroup/trade/exchange	The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.
separate	To start with a set and take away from that set.
subtract/subtraction	To compare two sets or to separate from a set.
subtrahend	The number to be subtracted.
tenths	The digit in representing $\frac{1}{10}$.

B. Background Information

Background Information:
In this module, we focus on subtraction with fractions and decimals. As you focus on computation of rational numbers, continue to emphasize subtraction as separating and subtraction as comparing because students will see these concepts within word problems.

For subtraction of fractions, we recommend using several models of fractions to help students understand concepts related to subtraction of fractions. We also recommend demonstrating several algorithms for subtraction of decimals. Every student should develop efficiency with strategies for subtraction of fractions and decimals. In the following sections, we provide examples of (1) subtraction of fractions - like denominators, (2) subtraction of fractions - unlike denominators, (3) subtraction of decimals with the traditional algorithm, and (4) subtraction of decimals with the adding up algorithm.

C. Routines and Examples

(1) Subtraction of Fractions - Like Denominators

Routine

Materials:

- Module 9 Problem Sets
- Module 9 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like fraction tiles or two-color counters
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES

Teacher
Students
Teacher Subtraction means to separate from a set or to compare two numbers. Look at this problem.
(Show problem.)
Teacher First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students To subtract.
Teacher Let's do this problem with fraction tiles. (Move fraction tiles to workspace.)
Teacher
Students
Teacher
Let's work on subtraction. What does it mean to subtract?

First, our minuend is \qquad . What's the minuend?

Let's show this minuend using the fraction tiles.
(Show fraction part compared to whole.)

Teacher	What fraction?
Students	
Teacher	Now, our subtrahend is __. What's our subtrahend?
Students	
Teacher	We'll subtract the subtrahend. When working with fractions, I like to show the subtrahend to know the quantity we will separate from the minuend. Let's show the subtrahend over here. (Show fraction part compared to whole.)
Teacher	What fraction?
Students	
Teacher	Let's subtract. When subtracting fractions, first we want to determine whether the denominators are like or unlike. Are the denominators like or the same?
Students	Yes.
Teacher	The denominators are the same. When the denominators are the same, we can go ahead and subtract. So, let's look at our subtrahend. We want to subtract the subtrahend from the minuend. How many \qquad one- \qquad parts do we subtract?
Students	__one-_ parts.
Teacher	Let's subtract __ one-__ parts.
Students	(Subtract from the minuend set.)
Teacher	So, we now have __, __ _, ... one-__ parts remaining. How many parts?
Students	
Teacher	When you have __ minus _, the difference is __. What's the difference?
Students	-
Teacher	_ minus _ equals _. Let's say that together.
Students	__ minus __ equals __.
Teacher	So, if you have a set of \qquad and a set of \qquad , when you subtract (or separate) the sets, the difference is \qquad -_ minus \qquad equals \qquad . Let's review. What's a minuend?
Students	The number from which another is subtracted.
Teacher	What's a subtrahend?
Students	The number to be subtracted.
Teacher	What's a difference?
Students	The result of subtracting a subtrahend from a minuend.
Teacher	What does it mean to separate?
Students	To take away.
Teacher	How could you explain separating to a friend?
Students	We started with a fraction showing fraction tiles. We checked whether the denominators were the same. Then, we separated \qquad one- \qquad parts from the minuend to learn the difference.
Teacher	What's another way we could have solved this problem?
Students	We could have compared two sets.

ROUTINE WITHOUT MANIPULATIVES

Teacher Let's work on subtraction. What does it mean to subtract?

Students
Teacher

Teacher

Students
Teacher

Students
Teacher
Students
Teacher
Students
Teacher

Students
Teacher

Students

Teacher

Students
Teacher
Students

Teacher Students Teacher Students Teacher

To separate or compare.
Subtraction means to separate from a set or to compare two sets. Look at this problem.
(Show problem.)
First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
To subtract.
Let's do this problem with our pencil. Our minuend is __. What's our minuend?
\qquad
-
Our subtrahend is \qquad . What's our subtrahend?
\qquad
So, we have __ _minus \qquad . Let's subtract by separating. What does separating mean?
To remove some from a set.
Yes. Let's subtract, or separate, the subtrahend from the minuend. What do we subtract?
The subtrahend from the minuend.
Now, the parts of the fractions are the numerators. When we subtract fractions, first we want to determine whether the denominators are like or unlike. Are the denominators like or the same?
Yes.
The denominators are the same. When the denominators are the same, we can go ahead and subtract. The denominator, __, will not change when we subtract the fractions. Let's go ahead and write the denominator for our difference.
(Write denominator.)
Now, we want to subtract the parts or numerator of the subtrahend from the minuend. That means we have to subtract __ one-_ parts from __ one-_ parts. What do we subtract?
We subtract the parts or numerators of the fractions.
Let's subtract the parts. What's __ minus _ ?
\qquad
Let's write the parts we subtracted.
(Write parts.)
When you have __ minus _ , the difference is _ . What's the difference?
\qquad _.
minus \qquad equals \qquad . Let's say that together.
__ minus __ equals __.
So, if you have a set of \qquad and a set of \qquad when you subtract (or separate) the subtrahend from the minuend, the difference is \qquad minus \qquad equals \qquad . Let's review. What's a minuend?

Students	The number from which another is subtracted.
Teacher	What's a subtrahend?
Students	The number to be subtracted.
Teacher	What's a difference?
Students	The result of subtracting a subtrahend from a minuend.
Teacher	What does it mean to separate?
Students	To take away.
Teacher	How could you explain separating to a friend?
Students	We checked whether the denominators were the same. Then, we subtracted the parts of the subtrahend from the parts of the minuend to learn the difference between two numbers.
Teacher	What's another way we could have solved this problem?
Students	We could have compared two sets.
Example	
	2
6	6
EXAMPLE WITH MANIPULATIVES	
Teacher	Let's work on subtraction. What does it mean to subtract?
Students	To separate or compare.
Teacher	Subtraction means to separate from a set or compare two sets. Look at this problem. (Show problem.)
Teacher	First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students	To subtract.
Teacher	Let's do this problem with fraction tiles. (Move fraction tiles to workspace.)
Teacher	Our minuend is $\frac{5}{6}$. What's our minuend?
Students	$\frac{5}{6}$.
Teacher	Let's show this minuend by showing the fraction. (Show 5 one-sixth parts compared to a whole.)
Teacher	What fraction?
Students	$\frac{5}{6}$.
Teacher	Our subtrahend is $\frac{3}{6}$. What's our subtrahend?
Students	$\frac{3}{6} .$
Teacher	Let's show the subtrahend by showing the fraction. (Show 3 one-sixth parts compared to a whole.)

Teacher	What fraction?
Students	$\frac{3}{6}$.

We showed the minuend with fraction tiles and showed the subtrahend with fraction tiles. Then, we subtracted 3 one-sixth parts from 5 one-sixth parts. The difference was two-sixths.
Teacher What's another way we could have solved this problem?
Students We could have compared two sets.

(2) Subtraction of Fractions - Unlike Denominators

Routine

Materials:

- Module 9 Problem Sets
- Module 9 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like fraction tiles or two-color counters
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES

Teacher Let's work on subtraction. What does it mean to subtract?
Students To separate or compare.
Teacher Subtraction means to separate from a set or compare two sets. Look at this problem.
(Show problem.)
Teacher First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students To subtract.
Teacher Let's do this problem with two-color counters. (Move two-color counters to workspace.)
Teacher
Students Our minuend is \qquad . What's our minuend?
\qquad
\qquad -
Teacher Let's show this minuend by showing the fraction.
(Show set compared to whole with white/yellow counters representing numerator and red counters representing denominator.)
Teacher
What fraction?
Students \qquad -.
Teacher
Our subtrahend is \qquad . What's our subtrahend?
Students \qquad -.
Teacher Let's show the subtrahend by showing the fraction. (Show set compared to whole with white/yellow counters representing numerator and red counters representing denominator.)
Teacher What fraction?
Students \qquad _.

Teacher	So, we have __ minus __. Let's subtract by separating. What does separating mean?
Students	
To take away from a set.	
Teacher	Yes. Let's separate, or take away, the subtrahend from the minuend. Remember, the parts of the fractions represent the numerators. When subtracting fractions, first we want to determine whether the denominators are like or unlike. You might also say common or uncommon denominators. Are the denominators the same or alike?
No.	

Teacher	OPTION 2:	To convert the fraction to a denominator of \qquad , I determine how many groups of \qquad (original denominator) I need to make \qquad (common denominator). I see I need to make \qquad groups of __ (original denominator). How many groups?
Students		
Teacher		So, I make \qquad groups of \qquad with the two-color counters. That means I iterate or copy the original fraction \qquad times. What does it mean to iterate?
Students		To copy.
Teacher		Our new fraction is \qquad _ Is \qquad (original fraction) equivalent to \qquad (fraction with common denominator)?
Students		Yes.
Teacher		How do you know the fractions are equivalent?
Students		The fractions have the same value. They are equivalent.
Teacher	So, we converted the minuend to a common denominator. Let's do the same with the subtrahend. What's the subtrahend?	
Teacher	The subtrahend has a denominator of __.	
	OPTION 1:	This is the original denominator. We don't have to do anything to this fraction.
	OPTION 2:	This is not the original denominator. We need to convert the fraction from a denominator of \qquad to a denominator of \qquad _.
Students	OPTION 1:	We don't have to change the denominator.
	OPTION 2:	We need to convert the fraction to a denominator of
Teacher	OPTION 2:	To convert the fraction to a denominator of \qquad , I determine how many groups of \qquad (original denominator) I need to make \qquad (common denominator). I see I need to make \qquad groups of _ (original denominator). How many groups?
Students		
Teacher		We make \qquad groups of \qquad with the two-color counters. That means I iterate or copy the original fraction \qquad times. How many times?
Students		
Teacher		Let's check our work. Is \qquad (original fraction) equivalent to \qquad (fraction with common denominator)?
Students		Yes.
Teacher		How do you know the fractions are equivalent?
Students		The fractions have the same value. They are equivalent.
Teacher	Now that w numerator subtract	e have common denominators, we want to subtract the parts or of subtrahend from the minuend. That means we have to one- \qquad parts from \qquad one- \qquad parts. What do we subtract?
Students	We subtrac	the parts or numerators of the fractions.

Teacher	Let's subtract the numerators. I like to keep my subtrahend set where it is and only subtract from the minuend set. We need to subtract the red oneparts. How many parts do we have to subtract?
Students	
Teacher	We subtract \qquad one- \qquad parts. I subtract by turning over (to yellow) \qquad oneparts. How many parts?
Students	
Teacher	When you have __ minus _ , the difference is _ . What's the difference?
Students	
Teacher	_ minus _ equals _ . Let's say that together.
Students	__ minus __ equals
Teacher	So, if you have a set of __ and subtract a set of _, the difference is \qquad \qquad \qquad minus \qquad equals \qquad . Let's review. What's a minuend?
Students	The number from which another is subtracted.
Teacher	What's a subtrahend?
Students	The number to be subtracted.
Teacher	What's a difference?
Students	The result of subtracting a subtrahend from a minuend.
Teacher	What does it mean to separate?
Students	To take away.
Teacher	How could you explain separating to a friend?
Students	We showed the minuend and the subtrahend. Then, we determined the common denominator using the LCM. After converting the fractions to common denominators, we subtracted the subtrahend parts from the minuend parts to learn of the difference.
Teacher	What's another way we could have solved this problem?
Students	We could have compared two sets.

ROUTINE WITHOUT MANIPULATIVES

Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher
Students

Let's work on subtraction. What does it mean to subtract?
To separate or compare.
Subtraction means to separate from a set or compare two sets. Look at this problem.
(Show problem.)
First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
To subtract.
Our minuend is \qquad .What's our minuend?
\qquad
Our subtrahend is \qquad . What's our subtrahend?
\qquad _.

Teacher	So, we have __ minus __. Let's subtract by separating. What does separating mean?		
Students			
To take away.			
Teacher	Yes. Let's separate, or take away, the subtrahend from the minuend. Remember, the parts of fractions represent the numerator. What do you subtract?		
The parts or numerators of the fractions.			
When subtracting fractions, first we want to determine whether the			
denominators are like or unlike. You might also say common or uncommon			
Teacher		\quad	denominators. Are the denominators the same or alike?
:---			

Students	OPTION 1: OPTION 2:	We don't have to change the denominator. We need to convert the fraction to a denominator of
Teacher	OPTION 2:	To convert the fraction to a denominator of \qquad , I determine how many groups of \qquad (original denominator) I need to make \qquad (common denominator). I see I need to make \qquad groups of __ (original denominator). How many groups?
Students		
Teacher		So, I multiply the denominator times \qquad and the numerator times \qquad . Let's multiply the denominator first. _ (original denominator) \qquad times \qquad is what?
Students		
Teacher		That's right. \qquad times \qquad equals \qquad . Our new denominator is \qquad What's our new denominator?
Students		
Teacher		Now, let's multiply the numerator times \qquad (original numerator) times \qquad is what?
Students		
Teacher		Yes. \qquad times \qquad equals \qquad . Our new numerator is \qquad . What's the new numerator?
Students		
Teacher		Let's check our work. Is \qquad (original fraction) equivalent to \qquad (fraction with common denominator)? How do you know the fractions are equivalent?
Students		The fractions have the same value. They are equivalent.
Teacher	So, we conv with the su	erted the minuend to a common denominator. Let's do the same btrahend. What's the subtrahend?
Teacher	The subtrah OPTION 1:	end has a denominator of _.. This is the original denominator. We don't have to do anything to this fraction.
	OPTION 2:	This is not the original denominator. We need to convert the fraction from a denominator of \qquad to a denominator of \qquad
	What do we	need to do?
Students	OPTION 1:	We don't have to change the denominator.
	OPTION 2:	We need to convert the fraction to a denominator of
Teacher	OPTION 2:	To convert the fraction to a denominator of \qquad , I determine how many groups of \qquad (original denominator) I need to make \qquad (common denominator). I see I need to make \qquad groups of __ (original denominator). How many groups?
Students		
Teacher		So, I multiply the denominator times \qquad and the numerator times \qquad . Let's multiply the denominator first. \qquad (original denominator) times \qquad is what?
Students		.

Teacher	That's right. \qquad times \qquad equals \qquad . Our new denominator is \qquad What's our new denominator?
Students	
Teacher	Now, let's multiply the numerator times _. _ (original numerator) times _ is what?
Students	
Teacher	Yes. \qquad times \qquad equals \qquad . Our new numerator is \qquad . What's the new numerator?
Students	
Teacher	Let's check our work. Is \qquad (original fraction) equivalent to \qquad (fraction with common denominator)? How do you know the fractions are equivalent?
Students	Yes.
Teacher	How do you know the fractions are equivalent?
Students	The fractions have the same value. They are equivalent.
Teacher	Now that we have common denominators, we want to subtract the parts or numerator of the subtrahend from the minuend. That means we have to subtract \qquad one- \qquad parts from \qquad one- \qquad parts. What do we subtract?
Students	We subtract the parts of the fractions.
Teacher	Let's subtract the parts or numerators. (Subtract parts, compare to whole.)
Teacher	So, we now have __, _, _, ... one-__ parts. How many parts?
Students	
Teacher	When you have __ minus _, the difference is _ . What's the difference?
Students	_.
Teacher	_ minus _ equals __. Let's say that together.
Students	__ minus __ equals __.
Teacher	So, if you have a set of \qquad and subtract a set of \qquad , the difference is \qquad . minus \qquad equals \qquad . Let's review. What's a minuend?
Students	The number from which another is subtracted.
Teacher	What's a subtrahend?
Students	The number to be subtracted.
Teacher	What's a difference?
Students	The result of subtracting a subtrahend from a minuend.
Teacher	What does it mean to separate?
Students	To take away.
Teacher	How could you explain separating to a friend?
Students	After determining a common denominator, we subtracted the subtrahend from the minuend to learn the difference.
Teacher	What's another way we could have solved this problem?
Students	We could have compared two sets.

Example

$$
\frac{7}{8}-\frac{1}{4}=\frac{5}{8}
$$

EXAMPLE WITH MANIPULATIVES

Teacher Let's work on subtraction. What does it mean to subtract?
Students To separate or compare.
Teacher Subtraction means to separate from a set or compare two sets. Look at this problem.
(Show problem.)
Teacher First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students To subtract.
Teacher Let's do this problem with two-color counters.
(Move two-color counters to workspace.)
Teacher Our minuend is $\frac{7}{8}$. What's our minuend?
Students $\quad \frac{7}{8}$.
Teacher Let's show this minuend by showing the fraction. First, we have a denominator of $\mathbf{8}$, so let's show $\mathbf{8}$ yellow counters. How many?
Students 8.
Teacher Then, we need to show 7 of the 8 parts as red to show $\frac{7}{8}$. How many should we make red?
Students 7.
Teacher What fraction?
Students $\quad \frac{7}{8}$.
Teacher Our subtrahend is $\frac{1}{4}$. What's our subtrahend?
Students $\frac{1}{4}$.
Teacher Let's show the subtrahend by showing the fraction. First, we have a denominator of 4 , so let's show 4 yellow counters. How many?
Students 4.
Teacher Then, we need to show 1 of the 4 parts as red to show $\frac{1}{4}$. How many should we make red?
Students 1.
Teacher What fraction?
Students $\frac{1}{4}$.
Teacher So, we have $\frac{7}{8}$ minus $\frac{1}{4}$. Let's subtract by separating. What does separating mean?
Students To take away.

Teacher	Yes. Let's separate, or take away, the parts of the fractions. When subtracting fractions, first we want to determine whether the denominators are like or unlike. You might also say common or uncommon denominators. Are the denominators the same or alike?
No.	

Teacher	To convert the fraction to a denominator of 8 , I determine how many groups of 4 I need to make 8 . I see I need to make 1, 2 groups of 4. (Point to the multiples of 4 and 8.) How many groups?
Students	2.
Teacher	Let's make 2 groups of the fraction $\frac{1}{4}$ with the two-color counters. We already have one group of $\frac{1}{4}$. Let's make a second group (show 1 red counter and 3 yellow counters). Our new fraction is $\frac{2}{8}$. Is $\frac{2}{8}$ equivalent to $\frac{1}{4}$?
Students	Yes. The fractions are equivalent.
Teacher	Now that we have common denominators, we want to subtract the subtrahend parts or numerator from the minuend parts or numerator. That means we need to subtract 2 one-eighth parts from 7 one-eighth parts. What do we subtract?
Students	We subtract the parts or numerators of the fractions.
Teacher	Let's subtract the parts or numerators. With the two-color counters, we leave the subtrahend set alone. We subtract the 2 one-eighth parts by turning over the parts or numerators of the minuend. How many parts do we subtract?
Students	2.
Teacher	We subtract the 2 one-eighth parts. We now have 1, 2, 3, 4, 5 one-eighth parts. How many parts?
Students	5.
Teacher	When you have $\frac{7}{8}$ minus $\frac{2}{8}$, the difference is $\frac{5}{8}$. What's the difference?
Students	$\frac{5}{8}$.
Teacher	$\frac{7}{8}$ minus $\frac{2}{8}$ equals $\frac{5}{8}$. Let's say that together.
Students	$\frac{7}{8} \text { minus } \frac{2}{8} \text { equals } \frac{5}{8} .$
Teacher	If you have a set of $\frac{7}{8}$ and subtract a set of $\frac{1}{4}$, the difference is $\frac{5}{8} . \frac{7}{8}$ minus $\frac{2}{8}$ equals $\frac{5}{8}$. Let's review. What's a minuend?
Students	The number from which another is subtracted.
Teacher	What's a subtrahend?
Students	The number to be subtracted.
Teacher	What's a difference?
Students	The amount between the minuend and subtrahend.
Teacher	What does it mean to separate?
Students	To take away.
Teacher	How could you explain separating to a friend?
Students	We showed the minuend and subtrahend. We used the LCM to determine the common denominator. Then, we subtracted the parts of the subtrahend from the parts of the minuend to learn the difference.
Teacher	What's another way we could have solved this problem?
Students	We could have compared two sets.

(3) Subtraction of Decimals with Traditional Algorithm

Routine

Materials:

- Module 9 Problem Sets
- Module 9 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like Base-10 blocks or money
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES

Teacher	Let's work on subtraction. What does it mean to subtract?
Students	To separate or compare.
Teacher	Subtraction means to separate from a set or to compare two sets. Look at this problem. (Show problem.)
Teacher	First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students	To subtract.
Teacher	Let's do this problem with our number line. (Show number line.)
Teacher	When we use the Base-10 blocks with decimals, we can shift the meaning of each type of block. Today, let's use the flats to represent ones. What do the flats represent?
Students	Ones.
Teacher	We'll use the rods to represent tenths. What do the rods represent?
Students	Tenths.
Teacher	How can we use the rods to represent tenths?
Students	1 rod equals 1 tenth.
Teacher	What do you notice about the relationship between the rods and the flat?
Students	There are 10 tenths in 1 in the same way there are 10 rods in 1 flat.
Teacher	With our Base-10 blocks, the units represent hundredths. What do the units represent?
Students	Hundredths.
Teacher	What do you notice about the relationship between the units and the rods?
Students	There are 10 hundredths in 1 tenth in the same way there are 10 units in 1 rod.
Teacher	Our minuend is __. What's our minuend?
Students	
Teacher	Let's show the minuend by showing \qquad ones, \qquad tenths, and \qquad hundredths. (Show with Base-10 blocks.)
Teacher	How many?
Students	
Teacher	Our subtrahend is _ . What's our subtrahend?

Students \qquad
Teacher
Let's show the subtrahend by showing \qquad ones, \qquad tenths, and \qquad hundredths. (Show with Base-10 blocks.)
Teacher
Students
Teacher
How many?

So, we have minus \qquad . Let's subtract by separating. What does separating mean?
Students
To take away.
Teacher Yes. Let's separate or take away. First, let's subtract the least place value.
That means the place value with the least or smallest value. What's the least place value in this problem?
Students Hundredths.
Teacher Let's subtract the hundredths.
(Subtract the subtrahend hundredths from the minuend hundredths.)
Teacher Let's separate __ hundredths from __ hundredths. Do we have enough minuend hundredths to separate the __ subtrahend hundredths?
Students Yes.
Teacher If we don't have enough hundredths, we have to regroup. Do we have to regroup?
Students No.
Teacher So, let's separate the subtrahend hundredths from the minuend hundredths. (Remove hundredths.)
Teacher How many hundredths are remaining?
Students _.
\qquad
Teacher
Yes! There are \qquad hundredths remaining. We leave the remaining hundredths here. Now, let's subtract the tenths. What should we subtract?
Students The tenths.
Teacher Let's separate __ tenths from __ tenths. Do we have enough minuend tenths to separate the __ subtrahend tenths?
Students No.
Teacher That means we have to regroup. To regroup, we exchange 1 one for 10 tenths. How do we regroup?
Students We exchange 1 one for 10 tenths. (Show regrouping.)
Teacher Now, we have __ tenths and can subtract __tenths. Let's separate the subtrahend tenths from the minuend tenths.
(Remove tenths.)
Teacher
Students

Teacher

Students
Teacher

How many tenths are remaining?
\qquad
There are \qquad tenths remaining. We leave the remaining tenths here. Now, let's subtract the ones. What should we subtract?
The ones.
Let's separate \qquad ones from \qquad ones. Do we have enough minuend ones to separate the subtrahend ones?

Students Yes.
Teacher We don't have to regroup. Let's subtract the ones.
(Remove ones.)
Teacher How many ones are remaining?
Students

Teacher

Teacher
Students

Teacher

Students
Teacher

Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher
Students

Teacher
Students

Teacher
Students
Teacher

Teacher
Students
Teacher
\qquad
$-$
So, let's count the ones, tenths, and hundredths to learn the difference.
Ready?
(Count the ones, then tenths, then hundredths.)
That means __ minus __ equals __. Let's say that together.
\qquad minus \qquad equals \qquad
Let's say it together again.
__ minus __ equals __.
\qquad
So, if you have a set of and subtract a set of \qquad the difference is \qquad . minus __ equals __. Let's review. What's a minuend?
The number from which another is subtracted.
What's a subtrahend?
The number to be subtracted.
What's a difference?
The amount between the minuend and subtrahend.
What does it mean to separate?
To take away.
How could you explain separating to a friend?
We subtracted the hundredths, then the tenths, then the ones to learn the difference.
What's another way we could have solved this problem?
We could have compared two sets.

ROUTINE WITHOUT MANIPULATIVES

Let's work on subtraction. What does it mean to subtract?
To separate or compare.
Subtraction means to separate from a set or compare two sets. Look at this problem.
(Show problem.)
First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
To subtract.
Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the different place value columns. Let's draw a vertical line between the ones column and the tenths column and another vertical line between the tenths column and the hundredths column.
(Draw vertical lines to separate place value columns.)
Teacher Now, we start by subtracting the hundredths. What should we subtract first?

Students The hundredths.

Teacher
Students
Teacher
Students
Teacher

Teacher

Students Teacher

Teacher

Students Teacher

Teacher
Students
Teacher
Students
Teacher
Students Teacher

Teacher
Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher Students

Which hundredths do we subtract?
\qquad minus __.
Do you have enough minuend hundredths to subtract?
No.
So, we have to regroup. To regroup, we regroup/trade/exchange 1 tenth for 10 hundredths. I subtract 1 tenth from the tenths column. __ minus 1 equals
\qquad . I like to cross out the \qquad and write a _ in the tenths column.
(Show subtraction of 1 tenth.)
Now, I imagine regrouping this 1 tenth into 10 hundredths. If I have 10 hundredths and add these hundredths to the \qquad hundredths, how many hundredths do I have now?
\qquad
I like to show the \qquad hundredths by crossing out the \qquad and writing \qquad in the hundredths column. (Show addition of 10 hundredths.)
Now, let's subtract the hundredths. What's \qquad minus \qquad ?
(If a student has difficulty with subtraction, say: Start with the subtrahend. Place that number in your fist, and let's count up to the minuend. Ready? \qquad
\qquad . See Counting Up poster at the end of Module 7 for more
information.)
\qquad -.

Great. There are \qquad hundredths. Let's write \qquad below the equal line.
(Write hundredths.)
Now, let's subtract the tenths. Which tenths do we subtract?
\qquad minus __.
Do you have enough tenths to subtract __tenths?
Yes.
You have enough tenths to subtract or take away __ tenths. We don't have to regroup. What's __ minus __?
\qquad .

There are __ tenths. Let's write __ below the equal line.
(Write tenths.)
Now, let's subtract the ones. Which ones do we subtract?
\qquad minus _ __.
Do you have enough ones to subtract __ ones?
Yes.
You have enough ones to subtract. You don't have to regroup. What's __ minus __?
\qquad
—.
Let's write \qquad below the equal line.
\qquad -.
So, let's look at the problem. What's __ minus __?
\qquad _.

Teacher That's right. _ minus __ equals __. Let's say that together.

Students
Teacher

Students
Teacher

Students
Teacher
Students
Teacher

Teacher
Students

Students The number to be subtracted.
Teacher What's a difference?

Students We subtracted the hundredths but we didn't have enough hundredths so we regrouped 1 tenth for 10 hundredths. Then, we subtracted the tenths. Then, we subtracted the ones. We figured out the difference between \qquad and \qquad What's another way we could have solved this problem?
\qquad minus \qquad equals \qquad .
So, if you have a set of __ and subtract a set of \qquad , the difference is \qquad
\qquad minus __ equals __. Let's review. What's a minuend?
The number from which another is subtracted.
What's a subtrahend?

The result of subtracting a subtrahend from a minuend.
What does it mean to separate?
To take away.
How could you explain separating to a friend?

We could have compared two sets.

Example

3.25
$-\quad 2.89$
0.36

EXAMPLE WITH MANIPULATIVES

Teacher Let's work on subtraction. What does it mean to subtract?
Students To separate or compare.
Teacher Subtraction means to separate from a set or compare two sets. Look at this problem.
(Show problem.)
Teacher First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students To subtract.
Teacher Let's do this problem with Base-10 blocks.
(Move Base-10 blocks to workspace.)
Teacher When we use the Base-10 blocks with decimals, we can shift the meaning of each type of block. Today, let's use the flats to represent ones. What do the flats represent?
Students Ones.
Teacher We'll use the rods to represent tenths. What do the rods represent?
Students Tenths.
Teacher How can we use the rods to represent tenths? What do you notice about the relationship between the rods and the flat?

Students There are 10 tenths in 1 in the same way there are 10 rods in 1 flat.
Teacher With our Base-10 blocks, the units represent hundredths. What do the units represent?
Students Hundredths.
Teacher What do you notice about the relationship between the units and the rods?
Students
Teacher There are 10 hundredths in 1 tenth in the same way there are 10 units in 1 rod.

Students Our minuend is $\mathbf{3}$ and $\mathbf{2 5}$ hundredths. What's our minuend?

Teacher 3 and 25 hundredths.
Let's show the minuend by showing 3 ones, 2 tenths, and 5 hundredths. (Show with Base-10 blocks.)
Teacher How many?
Students 3 and 25 hundredths.
Teacher Our subtrahend is $\mathbf{2}$ and 89 hundredths. What's our subtrahend?
Students 2 and 89 hundredths.
Teacher Instead of showing the subtrahend, let's subtract the subtrahend from the minuend. What should we do?
Students Subtract the subtrahend from the minuend.
Teacher Let's start by subtracting the least place value. What's the least place value in this problem?
Students Hundredths.
Teacher How many hundredths do we subtract?
Students 9.
Teacher We need to subtract 9 hundredths. How many hundredths are in the minuend?
Students 5.

Teacher Do you have enough hundredths to subtract 9 hundredths?
Students No.
Teacher So, let's regroup. Let's regroup/trade/exchange 1 tenths for 10 hundredths. (Show 1 tenth as equivalent to 10 hundredths.)
Teacher I place the $\mathbf{1 0}$ hundredths in the hundredths column. (Place 10 hundredths in hundredths column.)
Teacher Now we have 15 hundredths. How many hundredths?
Students 15.
Teacher Let's subtract the hundredths. That means we subtract 9 hundredths from 15 hundredths.
(Move hundredths.)
Teacher How many hundredths remaining?
Students 6 hundredths.
Teacher Let's subtract the tenths. We have 1 tenth in the minuend and we need to subtract 8 tenths of the subtrahend. Do we have enough tenths to subtract 8 tenths?
Students No.
Teacher What do we have to do?
Students Regroup.

Teacher	We need to regroup 1 one for 10 tenths. Let's regroup/trade/exchange 1 one for 10 tenths. (Show 1 one as equivalent to 10 tenths.)
Teacher	I place the $\mathbf{1 0}$ tenths in the tenths column. (Place 10 tenths in the tenths column.)
Teacher	Now we have $\mathbf{1 1}$ tenths. How many tenths?
Students	11.
Teacher	Let's subtract the tenths. We subtract 8 tenths from 11 tenths. (Move tenths.)
Teacher	How many tenths remaining?
Students	3 tenths.
Teacher	Now, let's subtract the ones. We have 2 ones in the minuend and 2 ones in the subtrahend. Do we have enough ones to subtract?
Students	Yes.
Teacher	What's 2 minus 2?
Students	0.
Teacher	So, let's count the ones, tenths, and hundredths to learn the difference. Ready? (Count the ones, then tenths, then hundredths.)
Teacher	That means $\mathbf{3}$ and $\mathbf{2 5}$ hundredths minus $\mathbf{2}$ and $\mathbf{8 9}$ hundredths equals $\mathbf{3 6}$ hundredths. Let's say that together.
Students	3 and 25 hundredths minus 2 and 89 hundredths equals 36 hundredths.
Teacher	Let's say it together again.
Students	3 and 25 hundredths minus 2 and 89 hundredths equals 36 hundredths.
Teacher	Let's review. What's a minuend?
Students	The number from which another is subtracted.
Teacher	What's a subtrahend?
Students	The number to be subtracted.
Teacher	What's a difference?
Students	The amount between the minuend and subtrahend.
Teacher	What does it mean to separate?
Students	To take away.
Teacher	How could you explain separating to a friend?
Students	We subtracted the hundredths but first we had to regroup. Then, we subtracted the tenths but we also had to regroup. Then, we subtracted the ones. The difference between 3 and 25 hundredths and 2 and 89 hundredths is 36 hundredths.
Teacher	What's another way we could have solved this problem?
Students	We could have compared two sets.

(4) Subtraction of Decimals with Adding Up Algorithm

Routine

Materials:

- Module 9 Problem Sets
- Module 9 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like Base-10 blocks or money
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES
Teacher Let's work on subtraction. What does it mean to subtract?
Students To separate or compare.
Teacher Subtraction means to separate from a set or to compare two sets. Look at this problem.
(Show problem.)
Teacher First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students To subtract.
Teacher Today, let's think about subtraction as the difference between two numbers. How can we interpret subtraction?
Students The difference between two numbers.
Teacher So, in this problem, subtraction is the difference between what two numbers?
Students \qquad and __.
Teacher Let's figure out the difference between __ and __. Let's do this with our Base10 blocks.
(Show Base-10 blocks.)
Teacher When we think about subtraction as the difference between two numbers, let's start with our subtrahend. What's the subtrahend in this problem?
Students \qquad -
Teacher
Students
Let's show the subtrahend with our Base-10 blocks. How many ones?

Teacher
Students
Teacher
Students
\qquad
How many tenths?
\qquad
How many hundredths?
\qquad
(Show subtrahend with Base-10 blocks.)
Teacher Now, let's think about what we could add to the subtrahend to reach the minuend, \qquad . I see that I could add \qquad hundredths to get to the nearest tenth.
I'll add the hundredths over here so I don't confuse these hundredths with the subtrahend hundredths.
(Add hundredths in separate pile.)

Teacher Now, what else could we add to reach the minuend, __? I see that I could add
\qquad tenths to get very close to the minuend of \qquad . I'll add the tenths over here so I don't confuse these tenths with the subtrahend tenths.
(Add tenths.)
Teacher Have we reached the minuend yet?
Students
Teacher
No.
What could we add to reach the minuend?
Students
Teacher

Teacher
Students
Teacher
Students
Teacher
Students
Teacher

Students
\qquad .

I could add __ ones to reach the minuend. Let's add the ones over here so I don't confuse these ones with the subtrahend ones.
(Add ones.)
So, the difference between __ and __ is: __ _, _, ... What's the difference?
\qquad
-
That means __ minus \qquad equals \qquad . Let's say that together.
\qquad minus __ equals \qquad .
Let's say it together again.
\qquad minus __ equals \qquad _.
With this strategy, called adding up, you figure out the difference between _ and __ by adding up. You add up to find the difference between _ _ and _ . How do you find the difference?

Teacher
Adding up from
\qquad to \qquad _.

Students
Let's review. What's a minuend?
Teacher
The number from which another is subtracted.

Students The number to be subtracted.
Teacher
What's a difference?
Students The result of subtracting a subtrahend from a minuend.
Teacher How could you explain adding up to a friend?
Students You start with the subtrahend. You keep adding until you reach the minuend.
You add up to find the difference between the minuend and subtrahend.

Example

5.17	2.99	
$-\quad 2.99$	3.00	+.01
	5.00	+2.00
	5.17	$\frac{+.17}{}$
		2.18

EXAMPLE WITHOUT MANIPULATIVES

Teacher Let's work on subtraction. What does it mean to subtract?
Students
Teacher

Teacher First, I see a minus sign (point). The minus sign tells us to subtract. What does the minus sign mean?
Students To subtract.
Teacher Today, let's think about subtraction as the difference between two numbers. How can we interpret subtraction?
Students The difference between two numbers.
Teacher So, in this problem, subtraction is the difference between what two numbers?
Students
Teacher Let's figure out the difference between 5.17 and 2.99.
Teacher When we think about subtraction as the difference between two numbers, let's start with our subtrahend. What's the subtrahend in this problem?
Students 2.99.
Teacher Let's write the subtrahend next to the problem. What should we write?
Students
Teacher

Teacher
Students
Teacher 2.99.

Now, let's think about what we could add to 2.99 to reach the minuend, 5.17. I see that I could add 1 hundredth to get to the nearest tenth. I'll write +. 01 over here to show I wanted to add 1 hundredth.
(Write +.01.)
If I added .01 to 2.99 , what's the sum?
3.00 .

Let's write 3.00 below 2.99 to remember we're now at $\mathbf{3 . 0 0}$. (Write 3.00 below 2.99.)
Teacher Let's figure out what we could add to 3.00 to reach the minuend, 5.17. Could we add 2 more to get to 5 ?
Students Yes.
Teacher Let's write +2.00 to show we wanted to add 2 ones.
(Write +2.00 below +.01 .)
Teacher If we added 2 to $\mathbf{3}$, what's the sum?
Students 5.
Teacher Let's write 5.00 below 3.00 to remember we're now at $\mathbf{5 . 0 0}$. (Write 5.00 below 3.00.)
Teacher Let's keep going. What could we add to 5.00 to reach the minuend?
Students . 17.
Teacher Great idea. Let's write +. 17 to show we wanted to add . 17 .
(Write +.17.)
Teacher If I added .17 to 5.00 , what's the sum?
Students 5.17.
Teacher Let's write 5.17 below 5.00 to remember we're now at 5.17.
(Write 5.17 below 5.00.)
Teacher Did we reach the minuend?
Students
Teacher Now, we add +. 01 and +2.00 and +.17 to determine the difference. How could we add these numbers?
Students $\quad 2.00+.17+.01$ (or other responses).
Teacher So, the difference is $\mathbf{2 . 1 8}$. What's the difference?
Students 2.18.
Teacher That means 5.17 minus 2.99 equals 2.18. Let's say that together.
Students $\quad 5.17$ minus 2.99 equals 2.18.
Teacher Let's say it together again.
Students $\quad 5.17$ minus 2.99 equals 2.18.
Teacher With this strategy, called adding up, you figure out the difference between 5.17 and 2.99 by adding up. How do you find the difference?

Students Adding up from 2.99 to 5.17.
Teacher Let's review. What's a minuend?
Students The number from which another is subtracted.
Teacher What's a subtrahend?
Students The number to be subtracted.
Teacher What's a difference?
Students The result of subtracting a subtrahend from a minuend.
Teacher How could you explain adding up to a friend?
Students You start with the subtrahend. You keep adding until you reach the minuend.
You add up to find the difference between the minuend and subtrahend.

D. Problems for Use During Instruction

See Module 9 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 9 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 9:

Subtraction of Rational Numbers

Problem Sets

A. Proper fractions with like denominators and sums <1 (20)
B. Improper fractions with like denominators and sums >1 (10)
C. Mixed numbers with like denominators and sums >1 (10)
D. Proper fractions with unlike denominator and sums <1 (20)
E. Improper fractions with unlike denominator and sums >1 (10)
F. Mixed numbers with unlike denominator and sums >1 (10)
G. Decimals with tenths; no regrouping (20)
H. Decimals with tenths; regrouping (20)
I. Decimals with hundredths; no regrouping (20)
J. Decimals with hundredths; regrouping (20)
K. Decimals with tenths and hundredths; mix of regrouping (20)

$7 \frac{7}{8}-4 \frac{3}{8}=$

$7 \frac{1}{10}-1 \frac{7}{8}=$

G.

G.

G.
6.7

G.

G.

G.

G.
0.3 0.1
G.

G.

$$
\begin{aligned}
& 3.3 \\
& 0.3
\end{aligned}
$$

G.

G.
4.1

G.

G.

G.

$$
\begin{array}{r}
6.3 \\
-\quad 2.1 \\
\hline
\end{array}
$$

G.

G.

G.

G.
6.7

G.

H.

H.

H.

$$
\begin{aligned}
& 8.5 \\
& 4.8
\end{aligned}
$$

H.

H.
6.5 4.6
H.

H.

H.

H.

$$
\begin{aligned}
& 9.5 \\
& 4.6
\end{aligned}
$$

H.

H.

$$
\begin{aligned}
& 5.5 \\
& 3.6
\end{aligned}
$$

H.

H.

$$
\begin{aligned}
& 8.6 \\
& 4.7
\end{aligned}
$$

H.

H.
8.6 1.8
H.

H.
6.5 0.6
H.

H.

H.

9.82 0.01

8.34
0.22

9.63 0.60

26.24 3.03

1.88 0.01

2.14 1.47

$$
\begin{aligned}
& 4.71 \\
& 3.89
\end{aligned}
$$

14.80
 6.96

7.83
 6.99

9.75 8.80

7.21 4.66

9.66 1.67

14.58 1.4

$$
\begin{aligned}
& 8.3 \\
& .91
\end{aligned}
$$

9.38 .19

$$
\begin{aligned}
& 9.3 \\
& 6.31
\end{aligned}
$$

9.17 2.7

9.9 4.23

Module 9:
 Subtraction of Rational Numbers

Vocabulary Cards

algorithm
compare
computation
decimal
denominator
difference
equal sign
equivalent
fraction
hundredths
improper fraction
least common multiple
minuend
minus sign
mixed number
multiple
numerator
ones
regroup/trade/exchange
separate
subtract/subtraction
subtrahend
tenths

algorithm

A procedure or description of steps that can be used to solve a problem.

compare

To find the difference between two sets.

$$
5-3=2
$$

computation

The action used to solve a problem.

decimal

A number based on powers of ten.
34.107

denominator

The term in a fraction that tells the number of equal parts in a whole.

$$
2 / 3 \frac{2}{3} \text { In these fractions, } 3 \text { is the denominator. }
$$

difference

The result of subtracting one number from another number.

$$
\begin{gathered}
6-4=2 \\
2 \text { is the difference }
\end{gathered}
$$

equal sign

The symbol that tells you that two sides of an equation are the same, balanced, or equal.

$$
\begin{gathered}
12-8=4 \\
=\text { is the equal sign }
\end{gathered}
$$

equivalent

Two numbers that have the same value.

$$
\frac{1}{4}=\frac{2}{8} \quad \frac{2}{3}=\frac{8}{12}
$$

fraction

A number representing part of a whole or set.

$$
\frac{3}{6} \quad \frac{10}{12} \quad \frac{8}{3}
$$

hundredths

The digit in representing $\frac{1}{100}$.
In the number 4.23, 3 is in the hundredths place.

improper fraction

Any fraction in which the numerator is greater than the denominator.

$$
\frac{9}{4} \quad \frac{17}{12} \quad \frac{10}{3}
$$

least common multiple

The common multiple with the least value.

$$
\begin{aligned}
& 6: 6,12,18,(24,30 \\
& 8: 8,16,24,32,40
\end{aligned}
$$

With multiples of $\mathbf{6}$ and 8 , the least common multiple is 24.

minuend

The number from which another number is subtracted.

$$
\begin{gathered}
9-4=5 \\
9 \text { is the minuend }
\end{gathered}
$$

minus sign

The symbol that tells you to subtract.

$$
\begin{gathered}
9-4=5 \\
- \text { is the minus sign }
\end{gathered}
$$

mixed number

A whole number and a fraction combined.

$$
1 \frac{1}{6} \quad 4 \frac{5}{12} \quad 12 \frac{4}{3}
$$

multiple

The product of a number and any integer.

$$
4: 4,8,12,16,20
$$

numerator

The term in a fraction that tells how many parts of a fraction.

$$
2 / 3 \frac{2}{3} \text { In these fractions, } 2 \text { is the numerator. }
$$

ones

The digit representing 1.
In the number 4.23, 4 is in the ones place.

regroup/trade/exchange

The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.

separate

To start with a set and take away from that set.

$$
5-3=2
$$

subtract/subtraction

To compare two sets or to separate from a set.

To compare two sets

$$
5-3=2
$$

To separate from a set

$$
5-3=2
$$

subtrahend

The number to be subtracted.

$$
9-4=5
$$

4 is the subtrahend

tenths

The digit in representing $\frac{1}{10}$.
In the number 4.23, 2 is in the tenths place.

