

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 6

Addition of Rational Numbers

Module 6: Addition of Rational Numbers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
add/addition	To put amounts together to find the sum or to increase a set.
addend	Any numbers that are added together.
algorithm	A procedure or description of steps that can be used to solve a problem.
computation	The action used to solve a problem.
decimal	A number based on powers of ten.
denominator	The term in a fraction that tells the number of equal parts in a whole.
equal sign	The symbol that tells you that two sides of an equation are the same, balanced, or equal.
equivalent	Two numbers that have the same value.
fraction	A number representing part of a whole or set.
hundredths	The digit in representing $\frac{1}{100}$.
improper fraction	Any fraction in which the numerator is greater than or equal to the denominator.
join	To add to an existing set.
least common multiple	The common multiple with the least value.
mixed number	A whole number and a fraction combined.
multiple	The product of a number and any integer.
numerator	The term in a fraction that tells how many parts of a fraction.
ones	The digit representing 1.
plus sign	The symbol that tells you to add.
regroup/trade/exchange	The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.
sum	The result of adding two or more numbers.
tenths	The digit in representing $\frac{1}{10}$.
together	To combine sets or numbers.

B. Background Information

In this module, we focus on addition with fractions and decimals. As you focus on computation of rational numbers, continue to emphasize addition as combining and addition as joining to a set because students will see these concepts within word problems.

For addition of fractions, we recommend using several models of fractions to help students understand concepts related to addition of fractions. We also recommend demonstrating several algorithms for addition of decimals. Every student should develop efficiency with strategies for addition of fractions and decimals. In the following sections, we provide examples of (1) addition of fractions - like denominators, (2) addition of fractions - unlike denominators, (3) addition of decimals with traditional algorithm, and (4) addition of decimals with partial sums algorithm.

C. Routines and Examples

(1) Addition of Fractions - Like Denominators

Routine

Materials:

- Module 6 Problem Sets
- Module 6 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like fraction tiles or two-color counters
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES

Teacher Let's work on addition. What does it mean to add?
Students To put together or to join to a set.
Teacher Addition means to put together or to join to a set. Look at this problem. (Show problem.)
Teacher First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students To add.
Teacher Let's do this problem with fraction tiles.
(Move fraction tiles to workspace.)
Teacher Our first addend is _. What's our first addend?
Students _.
Teacher Let's show this addend by showing the fraction.
(Show fraction part compared to whole.)
Teacher What fraction?

Students \qquad .

Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Students
Teacher

Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher

Students
Teacher
Students
Teacher
Students
Teacher
Students

Teacher
Students

Our second addend is \qquad . What's our second addend?
\qquad
Let's show the second addend by showing the fraction.
(Show fraction part compared to whole.)

What fraction?

\qquad
-
So, we have \qquad plus \qquad . Let's add by combining. What does combining mean? To put together.
Yes. Let's combine, or put together, the parts of the fraction. The parts of the fraction represent the numerator. When adding fractions, first we want to determine whether the denominators are like or unlike. Are the denominators like or the same?
Yes.
The denominators are the same. Second, we want to add the parts or numerators of each fraction. That means we have to add __ one-_ parts and __ one-_ parts. What do we add?
We add the parts or numerator of the fraction.
Let's combine the parts together.
(Combine parts, compare to whole.)
So, we now have __, _, __ ... one-_ parts. How many parts?
-.
When you have __ plus _, the sum is __. What's the sum?
_-.
_
plus
\qquad equals \qquad . Let's say that together.
__ plus __ equals __.
So, if you have a set of __ together) the sets, the sum is \qquad .
\qquad _plus
\qquad equals \qquad . Let's review. What's an addend?
One of the sets or numbers added together in an addition problem.
What's a sum?
The total number when you combine sets, or the result of adding two or more numbers together.
What do you add when you add fractions?
The parts or numerator of each fraction.
How could you explain solving this problem to a friend?
We started by showing each addend. Then, we added the parts or numerator together to determine the sum.

ROUTINE WITHOUT MANIPULATIVES

Let's work on addition. What does it mean to add?
To put together or to join to a set.

Teacher	Addition means to put together or to join to a set. Look at this problem. (Show problem.)
Teacher	First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students	To add.
Teacher	Our first addend is _ . What's our first addend?
Students	
Teacher	Our second addend is _ . What's our second addend?
Students	
Teacher	So, we have __ plus _ . Let's add by combining. What does combining mean?
Students	To put together.
Teacher	Yes. Let's combine, or put together, the parts of the fraction. The parts of the fraction are the numerators. When adding fractions, first we want to determine whether the denominators are like or unlike. Are the denominators like or the same?
Students	Yes.
Teacher	The denominators are the same. The denominator, \qquad , will not change when we add the fractions. Let's go ahead and write the denominator for our sum. (Write denominator.)
Teacher	Now, we want to add the parts or numerator of each fraction. That means we have to add \qquad one- \qquad parts and \qquad one- \qquad parts. What do we add?
Students	We add the parts or numerators of the fraction.
Teacher	Let's combine the parts together. What's _ plus __?
Students	
Teacher	Let's write the parts we added together. (Write parts.)
Teacher	When you have _ plus _ , the sum is __. What's the sum?
Students	
Teacher	_ plus _ equals _ . Let's say that together.
Students	_ _ plus __ equals
Teacher	So, if you have a set of \qquad and a set of \qquad , when you combine (or put together) the sets, the sum is \qquad plus \qquad equals \qquad . Let's review. What's an addend?
Students	One of the sets or numbers added together in an addition problem.
Teacher	What's a sum?
Students	The total number when you combine sets, or the result of adding two or more numbers together.
Teacher	What do you add when you add fractions?
Students	The parts or numerator of each fraction.
Teacher	How could you explain solving this problem to a friend?
Students	We determined the denominators of the fraction were the same. We added the parts of the fraction to determine the sum.

Example

EXAMPLE WITH MANIPULATIVES

Teacher Let's work on addition. What does it mean to add?

Students
Teacher

Teacher First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students To add.
Teacher Let's do this problem with fraction tiles. (Move fraction tiles to workspace.)
Teacher Our first addend is $\frac{2}{8}$. What's our first addend?
Students $\frac{2}{8}$.
Teacher Let's show this addend by showing the fraction. (Show 2 one-eighth parts compared to a whole.)
Teacher What fraction?
Students $\frac{2}{8}$.
Teacher Our second addend is $\frac{3}{8}$. What's our second addend?
Students $\frac{3}{8}$.
Teacher Let's show the second addend by showing the fraction.
(Show 3 one-eighth parts compared to a whole.)
Teacher What fraction?
Students $\frac{3}{8}$.
Teacher So, we have $\frac{2}{8}$ plus $\frac{3}{8}$. Let's add by combining. What does combining mean?
Students To put together.
Teacher Yes. Let's combine, or put together, the parts of the fraction. The parts of the fractions represent the numerators. When adding fractions, first we want to determine whether the denominators are like or unlike. Are the denominators like or the same?
Students Yes.
Teacher Both denominators are 8. The denominators are the same or like denominators. Second, we want to add the numerators, or parts, of each fraction. That means we have to add 2 one-eighth parts and 3 one-eighth parts. What do we add?
Students We add the parts or numerators of the fraction.
Teacher Let's combine the parts together. That means we're combining the numerators.
(Combine parts, compare to whole.)
Teacher So, we now have 1, 2, 3, 4, 5 one-eighth parts. How many parts?
Students 5 one-eighth parts.
Teacher When you have $\frac{2}{8}$ plus $\frac{3}{8}$, the sum is $\frac{5}{8}$. What's the sum?
Students $\frac{5}{8}$.
Teacher $\quad \frac{2}{8}$ plus $\frac{3}{8}$ equals $\frac{5}{8}$. Let's say that together.
Students $\quad \frac{2}{8}$ plus $\frac{3}{8}$ equals $\frac{5}{8}$.
Teacher So, if you have a set of $\frac{2}{8}$ and a set of $\frac{3}{8}$, when you combine (or put together) the parts or numerators of each fraction, the sum is $\frac{5}{8} . \frac{2}{8}$ plus $\frac{3}{8}$ equals $\frac{5}{8}$. Let's review. What's an addend?
Students One of the sets or numbers added together in an addition problem.
Teacher
What's a sum?
Students The total number when you combine sets, or the result of adding two or more numbers together.
Teacher What do you add when you add fractions?
Students The parts or numerators of each fraction.
Teacher How could you explain solving this problem to a friend?
Students We started by showing each addend. We checked whether there were like denominators, then added the parts or numerators together to determine the sum.

(2) Addition of Fractions - Unlike Denominators

Routine

Materials:

- Module 6 Problem Sets
- Module 6 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like fraction tiles or two-color counters
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES

Teacher Let's work on addition. What does it mean to add?
Students To put together or to join to a set.
Teacher Addition means to put together or to join to a set. Look at this problem. (Show problem.)
Teacher First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students To add.
Teacher Let's do this problem with two-color counters.

	(M
Teacher	Our first addend is _ . What's our first addend?
Students	
Teacher	Let's show this addend by showing the fraction. (Show set compared to whole with white/yellow counters representing numerator and red counters representing denominator.)
Teacher	What fraction?
Students	
Teacher	Our second addend is _ . What's our second addend?
Students	
Teacher	Let's show the second addend by showing the fraction. (Show set compared to whole with white/yellow counters representing numerator and red counters representing denominator.)
Teacher	What fraction?
Students	
Teacher	So, we have __ plus _ . Let's add by combining. What does combining mean?
Students	To put together.
Teacher	Yes. Let's combine, or put together, the parts of the fraction. Remember, the parts of the fractions represent the numerators. When adding fractions, first we want to determine whether the denominators are like or unlike. You might also say common or uncommon denominators. Are the denominators the same or alike?
Students	No.
Teacher	The denominators are not the same. To add, we should add parts or numerators with the same denominator. When the denominators are unlike, the parts or numerators do not have the same value. So, we will work to make the fractions have like denominators. Why do we want to add fractions with like denominators?
Students	So, we can add the parts or numerators of the fraction.
Teacher	To do this, let's write the first five multiples of each denominator. The first addend has a denominator of \qquad , so let's write the first five multiples of \qquad (Write multiples as \qquad _-_.)
Teacher	What are the multiples of __? Say them with me.
Students	,
Teacher	The second addend has a denominator of __, so let's write the first five multiples of \qquad (Write multiples as \qquad .)
Teacher	What are the multiples of __? Say them with me.
Students	-' -- --'
Teacher	Great. Let's determine the least common multiple of the two fractions. What is the multiple with the least value that you see on both lists of multiples?
Students	
Teacher	So, __ is the least common multiple. Say that with me.
Students	Least common multiple.

Teacher	Sometimes we call the least common multiple the LCM. What do we call the least common multiple?
Students	LCM.
Teacher	The least common multiple, or LCM, helps us to determine the common denominator for the two fractions. What does the LCM help with?
Students	Finding a common denominator for the two fractions.
Teacher	The first addend has a denominator of __.
	OPTION 1: This is the original denominator. We don't have to do anything to this fraction.
	OPTION 2: This is not the original denominator. We need to convert the fraction from a denominator of \qquad to a denominator of \qquad .
	What do we need to do?
Students	OPTION 1: We don't have to change the denominator.
	OPTION 2: We need to convert the fraction to a denominator of
Teacher	OPTION 2: To convert the fraction to a denominator of __, I determine how many groups of \qquad (original denominator) I need to make \qquad (common denominator). I see I need to make \qquad groups of __ (original denominator). How many groups?
Students	
Teacher	So, I make \qquad groups of \qquad with the two-color counters. That means I iterate or copy the original fraction \qquad times. What does it mean to iterate?
Students	To copy.
Teacher	Our new fraction is \qquad . Is \qquad (original fraction) equivalent to \qquad (fraction with common denominator)?
Students	Yes.
Teacher	How do you know the fractions are equivalent?
Students	The fractions have the same value. They are equivalent.
Teacher	So, we converted the first addend to a common denominator. Let's do the same with the second addend. What's the second addend?
Teacher	The second addend has a denominator of
	OPTION 1: This is the original denominator. We don't have to do anything to this fraction.
	OPTION 2: This is not the original denominator. We need to convert the fraction from a denominator of \qquad to a denominator of \qquad .
	What do we need to do?
Students	OPTION 1: We don't have to change the denominator.
	OPTION 2: We need to convert the fraction to a denominator of
Teacher	OPTION 2: To convert the fraction to a denominator of _ I I determine how many groups of \qquad (original denominator) I need to make \qquad (common denominator). I see I need to make \qquad \qquad \qquad groups of __ (original denominator). How many groups?
Students	-.

Teacher	We make \qquad groups of \qquad with the two-color counters. That means I iterate or copy the original fraction \qquad times. How many times?
Students	
Teacher	Let's check our work. Is \qquad (original fraction) equivalent to \qquad (fraction with common denominator)?
Students	Yes.
Teacher	How do you know the fractions are equivalent?
Students	The fractions have the same value. They are equivalent.
Teacher	Now that we have common denominators, we want to add the parts or numerators of each fraction. That means we have to add \qquad one- \qquad parts and \qquad one- \qquad parts. What do we add?
Students	We add the parts or numerators of the fraction.
Teacher	Let's combine the numerators together. With the two-color counters, we add the red one- \qquad parts. Because our common denominator is \qquad , we make groups of \qquad (common denominator). We make groups of what?
Students	
Teacher	We add the one- \qquad parts. We now have \qquad ... one- \qquad parts. How many parts?
Students	
Teacher	When you have __ plus _ , the sum is _ . What's the sum?
Students	
Teacher	_ plus __ equals __. Let's say that together.
Students	__ plus __ equals __.
Teacher	So, if you have a set of \qquad and a set of \qquad , when you combine (or put together) the sets, the sum is \qquad plus \qquad equals \qquad . Let's review. What's an addend?
Students	One of the sets or numbers added together in an addition problem.
Teacher	What's a sum?
Students	The total number when you combine sets, or the result of adding two or more numbers together.
Teacher	What do you add when you add fractions?
Students	The parts or numerators of each fraction.
Teacher	How could you explain solving this problem to a friend?
Students	We started by showing each addend. We decided the denominators were not alike, so we determined a common denominator by using the least common multiples. Then, we added the parts together to determine the sum.

ROUTINE WITHOUT MANIPULATIVES

Teacher
Students
Teacher

Let's work on addition. What does it mean to add?
To put together or to join to a set.
Addition means to put together or to join to a set. Look at this problem.
(Show problem.)

Teacher	First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students	To add.
Teacher	Our first addend is _ . What's our first addend?
Students	
Teacher	Our second addend is __. What's our second addend?
Students	
Teacher	So, we have _ plus _ . Let's add by combining. What does combining mean?
Students	To put together.
Teacher	Yes. Let's combine, or put together, the parts of the fraction. Remember, the parts of a fraction represent the numerator. What do you add?
Students	The parts or numerators of the fractions.
Teacher	When adding fractions, first we want to determine whether the denominators are like or unlike. You might also say common or uncommon denominators. Are the denominators the same or alike?
Students	No.
Teacher	The denominators are not the same. To add, we should add parts or numerators with the same value. When the denominators are unlike, the parts or numerators do not represent the same value. So, we will work to make the fractions have like denominators. Why do we want to add fractions with like denominators?
Students	So, we can add the parts or numerators of the fractions.
Teacher	To do this, let's write the first five multiples of each denominator. The first addend has a denominator of \qquad , so let's write the first five multiples of \qquad (Write multiples as \qquad , __.)
Teacher	What are the multiples of __? Say them with me.
Students	, -- -- - .
Teacher	The second addend has a denominator of __, so let's write the first five multiples of \qquad (Write multiples as __, _, _, __, __.)
Teacher	What are the multiples of __? Say them with me.
Students	
Teacher	Great. Let's determine the least common multiple of the two fractions. What is the multiple with the least value that you see on both lists of multiples?
Students	
Teacher	So, __ is the least common multiple. Say that with me.
Students	Least common multiple.
Teacher	Sometimes we call the least common multiple the LCM. What do we call the least common multiple?
Students	LCM.
Teacher	The least common multiple, or LCM, helps us determine the common denominator for the two fractions. What does the LCM help with?
Students	Finding a common denominator for the two fractions.

So, __ is the least common multiple. Say that with me.
Least common multiple.
Sometimes we call the least common multiple the LCM. What do we call the least common multiple?
LCM. denominator for the two fractions. What does the LCM help with?
Students

\qquad groups of _ (original denominator). How many groups?

Students
Teacher

Students
Teacher

Students
Teacher

Students
Teacher

Students
Teacher

Students
Teacher
Students
Teacher

Students
Teacher

Teacher
Students
Teacher
Students
Teacher
Students Teacher

Students
Teacher
Students

Teacher
Students
Teacher
_.
So, I multiply the denominator times ___ _an and the numerator times __. Let's multiply the denominator first. __ (original denominator) times __ is what?
\qquad
That's right. \qquad times \qquad equals \qquad . Our new denominator is \qquad . What's our new denominator?
\qquad -.
Now, let's multiply the numerator times \qquad - _ (original numerator) times \qquad is what?
-
Yes. __t times __ equals \qquad . Our new numerator is \qquad . What's the new numerator?
\qquad
Let's check our work. Is __ (original fraction) equivalent to \qquad (fraction with common denominator)?
Yes.
How do you know the fractions are equivalent?
The fractions have the same value. They are equivalent.
Now that we have common denominators, we want to add the parts or numerator of each fraction. That means we have to add __ one-_ parts and __ one-_ parts. What do we add?
We add the parts of the fraction.
Let's combine the parts or numerators together.
(Combine parts, compare to whole.)
So, we now have __, _, _, ... one-__ parts. How many parts?
\qquad
When you have __ plus _ , the sum is __. What's the sum?
\qquad _.

_plus __ equals \qquad . Let's say that together.
\qquad
So, if you have a set of \qquad and a set of \qquad _, when you combine (or put together) the sets, the sum is __. _ plus __ equals __. Let's review. What's an addend?
One of the sets or numbers added together in an addition problem.
What's a sum?
The total number when you combine sets, or the result of adding two or more numbers together.
What do you add when you add fractions?
The parts or numerator of each fraction.
How could you explain solving this problem to a friend?

Students We started by showing each addend. We used least common multiples to help determine common denominators. Then, we added the parts together to determine the sum.

Example

$$
\frac{3}{4}+\frac{1}{3}=\frac{13}{12}
$$

EXAMPLE WITH MANIPULATIVES

Teacher Let's work on addition. What does it mean to add?
Students To put together or to join to a set.
Teacher Addition means to put together or to join to a set. Look at this problem. (Show problem.)
Teacher First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students To add.
Teacher Let's do this problem with two-color counters. (Move two-color counters to workspace.)
Teacher Our first addend is $\frac{3}{4}$. What's our first addend?
Students $\frac{3}{4}$.
Teacher Let's show this addend by showing the fraction. First, we have a denominator of 4 , so let's show 4 yellow counters. How many?
Students 4.
Teacher Then, we need to show 3 of the 4 parts as red to show $\frac{3}{4}$. How many should we make red?
Students 3.
Teacher What fraction?
Students $\frac{3}{4}$.
Teacher Our second addend is $\frac{1}{3}$. What's our second addend?
Students $\frac{1}{3}$.
Teacher Let's show the second addend by showing the fraction. First, we have a denominator of $\mathbf{3}$, so let's show $\mathbf{3}$ yellow counters. How many?
Students 3.
Teacher Then, we need to show 1 of the 3 parts as red to show $\frac{1}{3}$. How many should we make red?
Students 1.
Teacher What fraction?
Students $\frac{1}{3}$.
$\left.\begin{array}{ll}\text { Teacher } & \begin{array}{l}\text { So, we have } \frac{3}{4} \text { plus } \frac{1}{3} \text {. Let's add by combining. What does combining mean? }\end{array} \\ \text { Students } \\ \text { Teacher } \\ \text { To put together. } \\ \text { Yes. Let's combine, or put together, the parts of the fraction. When adding } \\ \text { fractions, first we want to determine whether the denominators are like or } \\ \text { unlike. You might also say common or uncommon denominators. Are the } \\ \text { denominators the same or alike? }\end{array}\right]$

Students
3.

Teacher

Students
Teacher

Students
Teacher

Students Teacher

Students Teacher

Students Teacher

Students
Teacher

Students Teacher

Students Teacher

Students
Teacher
Students
$\frac{1}{3}$.
13. $\frac{13}{12}$. 12.
4.

Let's make 3 groups of the fraction $\frac{3}{4}$ with the two-color counters. We already have one group of $\frac{3}{4}$. Let's make a second group (show 3 red counters and 1 yellow counter) and a third group (show 3 red counters and 1 yellow counter.) Our new fraction is $\frac{9}{12}$. Is $\frac{9}{12}$ equivalent to $\frac{3}{4}$?
Yes. The fractions are equivalent.
So, we converted the first addend to a common denominator. Let's do the same with the second addend. What's the second addend?

The second addend has a denominator of 3, which is not the original denominator. We need to convert the fraction from a denominator of 3 to a denominator of 12 . What do we need to do?

When you have $\frac{9}{12}$ plus $\frac{4}{12}$, the sum is $\frac{13}{12}$. What's the sum? we add the red one-twelfth parts. Because our common denominator is 12, we make groups of 12 (common denominator). We make groups of what?

We add the one-twelfth parts. We now have $1,2,3,4,5,6,7,8,9,10,11,12$, yellow counters), a third group (show 1 red counter and 2 yellow counters), and a fourth group (show 1 red counter and 2 yellow counters). Our new fraction is $\frac{4}{12}$. Is $\frac{4}{12}$ equivalent to $\frac{1}{3}$?
Yes. The fractions are equivalent.
Now that we have common denominators, we want to add the parts or numerators of each fraction. That means we have to add 9 one-twelfth parts and 4 one- twelfth parts. What do we add?
We add the parts or numerators of the fractions.
Let's combine the parts or numerators together. With the two-color counters,
To convert the fraction to a denominator of 12, I determine how many groups of 3 I need to make 12. I see I need to make 1, 2, 3, 4 groups of 3. (Point to the multiples of $3,6,9$, and 12.) How many groups?

Let's make 4 groups of the fraction $\frac{1}{3}$ with the two-color counters. We already have one group of $\frac{1}{3}$. Let's make a second group (show 1 red counter and 2

	$\frac{13}{12}$ is also equivalent to $1 \frac{1}{12}$.
Teacher	If you have a set of $\frac{3}{4}$ and a set of $\frac{1}{3}$, when you combine (or put together) the sets, the sum is $\frac{13}{12} \cdot \frac{9}{12}$ plus $\frac{4}{12}$ equals $\frac{13}{12}$. Let's review. What's an addend?
Students	One of the sets or numbers added together in an addition problem.
Teacher	What's a sum?
Students	The total number when you combine sets, or the result of adding two or more numbers together.
Teacher	What do you add when you add fractions?
Students	The parts or numerator of each fraction.
Teacher	How could you explain solving this problem to a friend?
Students	We started by showing each addend. We determined the denominators were not alike. So, we used least common multiples to find a common denominator. After converting both fractions to a common denominator, we added the parts or numerators together to determine the sum.

(3) Addition of Decimals with Traditional Algorithm

Routine

Materials:

- Module 6 Problem Sets
- Module 6 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like Base-10 blocks or money
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES

Teacher	Let's work on addition. What does it mean to add? Students Teacher
To put together or to join to a set. Addition means to put together or to join to a set. Look at this problem. (Show problem.)	
Teacher	First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students	To add. Let's do this problem with Base-10 blocks.
Teacher	(Move Base-10 blocks to workspace.)
Teacher \quadWhen we use the Base-10 blocks with decimals, we can shift the meaning of each type of block. Today, let's use the flats to represent ones. What do the flats represent?	
Students \quadOnes. Teacher\quadWe'll use the rods to represent tenths. What do the rods represent?	

Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Students
Teacher
Teacher Let's count to learn the sum of the hundredths.
(Count hundredths.)
Teacher
Students
Teacher

Students
Teacher
Tenths.
How can we use the rods to represent tenths?
1 rod equals 1 tenth.
What do you notice about the relationship between the rods and the flat?
There are 10 tenths in 1 in the same way there are 10 rods in 1 flat. represent?
Hundredths.

Our first addend is __. What's our first addend?
\qquad
Let's show this addend by showing _ ones, __ tenths, and __ hundredths. (Show with Base-10 blocks.)
How many?
\qquad
Our second addend is \qquad . What's our second addend?
\qquad
Let's show the second addend by showing \qquad hundredths.
(Show with Base-10 blocks. Place Base-10 blocks under the first addend.)
How many?
\qquad
So, we have __ plus \qquad To put together. place value in this problem?

Hundredths.

Let's add the hundredths together.
(Move two sets of hundredths together.)

How many hundredths are there in total or altogether?
\qquad _. regroup. Do we have more than 9 hundredths?
Yes.
We have more than 9 hundredths. That means we have to regroup. To regroup, we count 10 hundredths and regroup/trade/exchange the 10 (Count 10 hundredths.)
Teacher Let's regroup/trade/exchange the $\mathbf{1 0}$ hundredths for 1 tenth. See how 1 tenth is the same as 10 hundredths?

With our Base-10 blocks, the units represent hundredths. What do the units

What do you notice about the relationship between the units and the rods?
There are 10 hundredths in 1 tenth in the same way there are 10 units in 1 rod. ones, \qquad tenths, and \qquad Let's add by combining. What does combining mean?

Yes. Let's combine or put together. First, let's combine the least place value. That means the place value with the least or smallest value. What's the least

Yes! There are __ hundredths. If we have more than 9 hundredths, we have to hundredths for 1 tenth. Let's do that together. Let's count out 10 hundredths.

Students

Teacher

Teacher
Students Teacher

Students

Teacher

Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Students
Teacher
Students

Teacher
Students
Teacher
Students

Yes.
We leave the remaining hundredths here. But we can't put this 1 tenth in the hundredths place. The hundredths place is only for hundredths. So, we place the 1 tenth in the tenths column. I like to place the 1 tenth above the other tenths.
(Place 1 tenth above tenths column.)
Now, let's combine the tenths. That means we put all the tenths together. (Move sets of tenths together.)
How many tenths are there in total or altogether?
\qquad
There are __ tenths. If we have more than 9 tenths, we have to regroup. Do we have more than 9 tenths?
No.
Now, let's combine the ones. Let's put all the ones together.
(Move sets of ones together.)
How many ones are there in total or altogether?
\qquad .

So, let's count the ones, tenths, and hundredths to learn the sum. Ready? (Count the ones, then tenths, then hundredths.) That means __ plus __ equals __. Let's say that together.
\qquad
Let's say it together again.
_-p plus \qquad equals \qquad
So, if you have a set of __ and a set of __, when you combine (or put together) the sets, the sum is __. _ plus __ equals __. Let's review. What's an addend?
One of the sets or numbers added together in an addition problem.
What's a sum?
The total number when you combine sets, or the result of adding two or more numbers together.
What does it mean to regroup/trade/exchange?
You can regroup/trade/exchange 10 hundredths for 1 tenth.
How could you explain solving this problem to a friend?
We started by showing each addend. Then, we combined the hundredths. We regrouped 10 hundredths for 1 tenth. Then, we combined the tenths. Then, we combined the ones. The sum was the total number of ones, tenths, and hundredths.

ROUTINE WITHOUT MANIPULATIVES

Teacher
Students
Teacher

Let's work on addition. What does it mean to add?
To put together or to join to a set.
Addition means to put together or to join to a set. Look at this problem. (Show problem.)

Teacher	First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students	To add.
Teacher	Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the different place value columns. Let's draw a vertical line between the ones column and the tenths column and another line between the tenths column and the hundredths column. (Draw vertical lines to separate place value columns.)
Teacher	Now, we start by adding the hundredths. What should we add first?
Students	The hundredths.
Teacher	Which hundredths do we add?
Students	__plus __.
Teacher	What's \qquad plus \qquad ? (If a student has difficulty with addition, say: Start with the greater addend. Place that number in your fist, and let's count up \qquad more. Ready? \qquad : \qquad __. See Counting Up poster at the end of Module 4 for more information.)
Teacher	How many hundredths are there in total or altogether?
Students	
Teacher	Yes! There are \qquad hundredths. If we have more than 9 hundredths, we have to regroup. Do we have more than 9 hundredths?
Students	Yes.
Teacher	We have more than 9 hundredths. That means we have to regroup. We think of our hundredths sum as 1 tenth and \qquad hundredths. We write the hundredths in the hundredths column under the equal line. (Write hundredths under equal line.)
Teacher	We regroup the 1 tenth to the tenths column. We write the 1 tenth in the tenths column above the other tenths. (Write 1 above tenths column.)
Teacher	Now, let's add the tenths. Which tens do we add?
Students	__ plus __ plus
Teacher	What's _ plus _ plus _ ?
Students	
Teacher	How many tenths are there in total or altogether?
Students	
Teacher	There are \qquad tenths. If we have more than 9 tenths, we have to regroup. Do we have more than 9 tenths?
Students	No.
Teacher	Now, let's add the ones. Which ones do we add?
Students	_ plus _ .
Teacher	What's _ plus __?
Students	
Teacher	How many ones are there in total or altogether?
Students	

Teacher So, let's look at the problem. What's _ plus _ ?
Students
Teacher
\qquad
That's right. _ plus __ equals __. Let's say that together.
Students __ plus __ equals __.
Teacher
So, if you have a set of \qquad and a set of \qquad , when you combine (or join) the sets, the sum is __. _ plus __ equals __. Let's review. What's an addend?
Students One of the sets or numbers added together in an addition problem.
Teacher What's a sum?
Students The total number when you combine sets, or the result of adding two or more numbers together.
Teacher What does it mean to regroup/trade/exchange?
Students
Teacher You can regroup/trade/exchange 10 hundredths for 1 tenth.

Students First, we combined the hundredths. We regrouped 10 hundredths for 1 tenth. Then, we combined the tenths. Then, we combined the ones. The sum was the total number of ones, tenths, and hundredths.

Example

2.16
$+\quad 4.78$
6.94

EXAMPLE WITH MANIPULATIVES

Teacher Let's work on addition. What does it mean to add?
Students To put together or to join to a set.
Teacher Addition means to put together or to join to a set. Look at this problem. (Show problem.)
Teacher First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students To add.
Teacher Let's do this problem with Base-10 blocks.
(Move Base-10 blocks to workspace.)
Teacher When we use the Base-10 blocks with decimals, we can shift the meaning of each type of block. Today, let's use the flats to represent ones. What do the flats represent?
Students Ones.
Teacher We'll use the rods to represent tenths. What do the rods represent?
Students Tenths.
Teacher How can we use the rods to represent tenths? What do you notice about the relationship between the rods and the flat?
Students There are 10 tenths in 1 in the same way there are 10 rods in 1 flat.

Teacher	With our Base-10 blocks, the units represent hundredths. What do the units represent?
Students	Hundredths.
Teacher	What do you notice about the relationship between the units and the rods?
Students	There are 10 hundredths in 1 tenth in the same way there are 10 units in 1 rod.
Teacher	Our first addend is $\mathbf{2}$ and $\mathbf{1 6}$ hundredths. What's our first addend?
Students	2 and 16 hundredths.
Teacher	Let's show this addend by showing 2 ones, 1 tenth, and 6 hundredths. (Show with Base-10 blocks.)
Teacher	How many?
Students	2 and 16 hundredths.
Teacher	Our second addend is 4 and 78 hundredths. What's our second addend?
Students	4 and 78 hundredths.
Teacher	Let's show the second addend by showing 4 ones, 7 tenths, and 8 hundredths. (Show with Base-10 blocks. Place Base-10 blocks under the first addend.)
Teacher	How many?
Students	4 and 78 hundredths.
Teacher	So, we have $\mathbf{2}$ and 16 hundredths plus $\mathbf{4}$ and 78 hundredths. Let's add by combining. What does combining mean?
Students	To put together.
Teacher	Yes. Let's combine or put together. First, let's combine the least place value. What's the least place value in this problem?
Students	Hundredths.
Teacher	Let's add the hundredths together. 6 hundredths plus 8 hundredths. (Move two sets of hundredths together.)
Teacher	Let's count to learn the sum of the hundredths. (Count hundredths.)
Teacher	How many hundredths are there in total or altogether?
Students	14.
Teacher	Yes! There are 14 hundredths. If we have more than 9 hundredths, we have to regroup. Do we have more than 9 hundredths?
Students	Yes.
Teacher	We have more than 9 hundredths. That means we have to regroup. To regroup, we count 10 hundredths and regroup/trade/exchange the 10 hundredths for 1 tenth. Let's do that together. Let's count out 10 hundredths. (Count 10 hundredths.)
Teacher	Let's regroup/trade/exchange the 10 hundredths for 1 tenth. See how 1 tenth is the same as $\mathbf{1 0}$ hundredths?
Students	Yes.
Teacher	We leave the remaining hundredths here. But we can't put this 1 tenth in the hundredths place. The hundredths place is only for hundredths. So, we place the 1 tenth in the tenths column. I like to place the 1 tenth above the other tenths. (Place 1 tenth above tenths column.)

Teacher	Now, let's combine the tenths. That means we put all the tenths together. (Move sets of tenths together.)
Teacher	Let's add $\mathbf{1}$ tenth plus 1 tenth plus $\mathbf{7}$ tenths. How many tenths are there in total or altogether?
Students	9.
Teacher	There are 9 tenths. If we have more than 9 tenths, we have to regroup. Do we have more than 9 tenths?
Students	No.
Teacher	Now, let's combine the ones. Let's put all the ones together. (Move sets of ones together.)
Teacher	How many ones are there in total or altogether?
Students	6.
Teacher	So, let's count the ones, tenths, and hundredths to learn the sum. Ready? (Count the ones, then tenths, then hundredths.)
Teacher	That means 2 and 16 hundredths plus 4 and 78 hundredths equals 6 and 94 hundredths. Let's say that together.
Students	2 and 16 hundredths plus 4 and 78 hundredths equals 6 and 94 hundredths.
Teacher	Let's say it together again.
Students	2 and 16 hundredths plus 4 and 78 hundredths equals 6 and 94 hundredths.
Teacher	Let's review. What's an addend?
Students	One of the sets or numbers added together in an addition problem.
Teacher	What's a sum?
Students	The total number when you combine sets, or the result of adding two or more numbers together.
Teacher	What does it mean to regroup/trade/exchange?
Students	You can regroup/trade/exchange 10 hundredths for 1 tenth.
Teacher	How could you explain solving this problem to a friend?
Students	We started by showing each addend. Then, we combined the hundredths. We regrouped 10 hundredths for 1 tenth. Then, we combined the tenths. Then, we combined the ones. The sum was the total number of ones, tenths, and hundredths.

(4) Addition of Decimals with Partial Sums Algorithm

Routine

Materials:

- Module 6 Problem Sets
- Module 6 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like Base-10 blocks or money
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES

Teacher	Let's work on addition. What does it mean to add?
Students	To put together or to join to a set.
Teacher	Addition means to put together or to join to a set. Look at this problem. (Show problem.)
Teacher	First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students	To add.
Teacher	Let's do this problem with money. (Move money to workspace.)
Teacher	When we use the money, the dollar bills represent ones. What do the dollar bills represent?
Students	Ones.
Teacher	We'll use the dimes to represent tenths. What do the dimes represent?
Students	Tenths.
Teacher	How can we use the dimes to represent tenths?
Students	1 dime represents 1 tenth.
Teacher	What do you notice about the relationship between the dimes and the dollar bill?
Students	There are 10 dimes in 1 dollar.
Teacher	With our money, the pennies represent hundredths. What do the pennies represent?
Students	Hundredths.
Teacher	What do you notice about the relationship between the pennies and the dimes?
Students	There are 10 pennies in 1 dime.
Teacher	Our first addend is __. What's our first addend?
Students	
Teacher	Let's show this addend by showing \qquad ones, \qquad tenths, and \qquad hundredths. (Show with money.)
Teacher	How many?
Students	_.
Teacher	Our second addend is __. What's our second addend?
Students	
Teacher	Let's show the second addend by showing \qquad ones, \qquad tenths, and \qquad hundredths. (Show with money. Place under the first addend.)
Teacher	How many?
Students	
Teacher	So, we have \qquad plus \qquad . Let's add by combining. What does combining mean?
Students	To put together.

Teacher	Yes. Let's combine or put together. First, let's combine the ones. That means we combine the dollars. This will be our first partial sum. It's the sum for part of the problem. Adding the ones means we put all the ones together. (Move two sets of ones together.)
Let's count to learn the sum of the ones.	
(Count ones.)	

ROUTINE WITHOUT MANIPULATIVES

Teacher
Students
Teacher

Teacher

Students
Teacher

Teacher

Students
Teacher
Students
Teacher

Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Teacher
Students
Teacher
Students

Let's work on addition. What does it mean to add?
To put together or to join to a set.
Addition means to put together or to join to a set. Look at this problem. (Show problem.)
First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
To add.
Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the different place value columns. Let's draw a vertical line between the ones column and the tenths column and another line between the tenths column and the hundredths column.
(Draw vertical lines to separate place value columns.)
With the partial sums algorithm, we start by adding the greatest place value.
What should we add first?
The ones.
Which ones do we add?
\qquad plus \qquad .
What's \qquad plus
\qquad
(If a student has difficulty with addition, say: Start with the greater addend. Place that number in your fist, and let's count up \qquad more. Ready? \qquad : \qquad __. See Counting Up poster at the end of Module 4 for more information.) How many ones are there in total or altogether?
\qquad .
So, let's write __ under the equal line.
(Write ones.)
Now, let's add the tenths. Which tens do we add?
_ plus \qquad .
What's __ plus __?
\qquad
Let's write \qquad under the equal line.
(Write tenths.)
Now, let's add the hundredths. Which hundredths do we add?
__ plus \qquad
What's __ plus __?
\qquad
Let's write __ under the equal line.
(Write hundredths.)
Now, let's add the partial sums. What's _ plus _ plus __?
\qquad .
That's right. To review, _ plus _ equals __. Let's say that together.
\qquad plus .

Teacher	So, if you have a set of \qquad and a set of \qquad _, when you combine (or join) the sets, the sum is \qquad \qquad plus \qquad equals \qquad . Let's review. What's an addend?
Students	One of the sets or numbers added together in an addition problem.
Teacher	What's a sum?
Students	The total number when you combine sets, or the result of adding two or more numbers together.
Teacher	What's a partial sum?
Students	The sum of just the ones or the tenths or the hundredths.
Teacher	How could you explain solving this problem to a friend?
Students	First, we combined the ones. Then, we combined the tenths. Then, we combined the hundredths. The sum was the total number of ones, tenths, hundredths.

2.16
$+\quad 4.78$
6.94

EXAMPLE WITH MANIPULATIVES

Teacher Let's work on addition. What does it mean to add?
Students To put together or to join to a set.
Teacher Addition means to put together or to join to a set. Look at this problem. (Show problem.)
Teacher First, I see a plus sign (point). The plus sign tells us to add. What does the plus sign mean?
Students To add.
Teacher Let's do this problem with Base-10 blocks.
(Move Base-10 blocks to workspace.)
Teacher When we use the Base-10 blocks with decimals, we can shift the meaning of each type of block. Today, let's use the flats to represent ones. What do the flats represent?
Students Ones.
Teacher We'll use the rods to represent tenths. What do the rods represent?
Students Tenths.
Teacher How can we use the rods to represent tenths?
Students 1 rod equals 1 tenth.
Teacher What do you notice about the relationship between the rods and the flat?
Students There are 10 tenths in 1 in the same way there are 10 rods in 1 flat.
Teacher With our Base-10 blocks, the units represent hundredths. What do the units represent?
Students Hundredths.
Teacher What do you notice about the relationship between the units and the rods?
Students There are 10 hundredths in 1 tenth in the same way there are 10 units in 1 rod.
Teacher Our first addend is $\mathbf{2}$ and $\mathbf{1 6}$ hundredths. What's our first addend?
Students 2 and 16 hundredths.

Teacher	Let's show this addend by showing 2 ones, 1 tenth, and 6 hundredths. (Show with Base-10 blocks.)
Teacher	How many?
Students	2 and 16 hundredths.
Teacher	Our second addend is 4 and 78 hundredths. What's our second addend?
Students	4 and 78 hundredths.
Teacher	Let's show the second addend by showing 4 ones, 7 tenths, and 8 hundredths. (Show with Base-10 blocks. Place Base-10 blocks under the first addend.)
Teacher	How many?
Students	4 and 78 hundredths.
Teacher	So, we have 2 and 16 hundredths plus 4 and 78 hundredths. Let's add by combining. What does combining mean?
Students	To put together.
Teacher	Yes. Let's combine or put together. We'll use the partial sums strategy. What strategy?
Students	Partial sums.
Teacher	With the partial sums strategy, we add the greatest place value first. What's the greatest place value in this problem?
Students	Ones.
Teacher	Let's add the ones together: 2 plus 4. (Move 2 flats and 4 flats together.)
Teacher	Let's count to learn the sum of the ones. (Count ones.)
Teacher	How many ones are there in total or altogether?
Students	6.
Teacher	Yes! There are 6 ones. Now, let's combine the tenths. That means we put all the tenths together: 1 tenth and 7 tenths. (Move 1 rod and 7 rods together.)
Teacher	How many tenths are there in total or altogether?
Students	8.
Teacher	There are 8 tenths. Now, let's combine the hundredths. Let's put all the hundredths together: 6 hundredths and 8 hundredths. (Move 6 units and 8 units together.)
Teacher	How many hundredths are there in total or altogether?
Students	14.
Teacher	Notice that 14 hundredths is the same as what?
Students	1 tenth and 4 hundredths.
Teacher	So, let's count the ones, tenths, and hundredths to learn the sum. Ready? 6 and $10,20,30,40,50,60,70,80,90,91,92,93,94$ hundredths.
Teacher	That means 2 and 16 hundredths plus 4 and 78 hundredths equals 6 and 94 hundredths. Let's say that together.
Students	2 and 16 hundredths plus 4 and 78 hundredths equals 6 and 94 hundredths.
Teacher	Let's say it together again.
Students	2 and 16 hundredths plus 4 and 78 hundredths equals 6 and 94 hundredths.

Teacher Let's review. What's an addend?
Students One of the sets or numbers added together in an addition problem.
Teacher What's a sum?
Students The total number when you combine sets, or the result of adding two or more numbers together.
Teacher What's a partial sum?
Students The sum of just the ones or the tenths or the hundredths.
Teacher How could you explain solving this problem to a friend?
Students We started by showing each addend. Then, we added the ones, then the tenths, and then the hundredths. The sum was the total number of ones, tenths, and hundredths.

D. Problems for Use During Instruction

See Module 6 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 6 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 6: Addition of Rational Numbers

Problem Sets

A. Proper fractions with like denominators and sums <1 (20)
B. Improper fractions with like denominators and sums >1 (10)
C. Mixed numbers with like denominators and sums >1 (10)
D. Proper fractions with unlike denominators and sums <1 (20)
E. Improper fractions with unlike denominators and sums >1 (10)
F. Mixed numbers with unlike denominators and sums >1 (10)
G. Decimals with tenths; no regrouping (20)
H. Decimals with tenths; regrouping (20)
I. Decimals with hundredths; no regrouping (20)
J. Decimals with hundredths; regrouping (20)
K. Decimals with tenths and hundredths; mix of regrouping (20)

B.

10
 $+\frac{5}{10}=$

12
 $10+\frac{10}{4}$

G.

0.3

G.

G.

G.

$$
\begin{array}{r}
2.5 \\
+4.2
\end{array}
$$

G.

$$
\begin{array}{r}
0.1 \\
+4.1
\end{array}
$$

G.

$$
\begin{array}{r}
3.3 \\
+4.6
\end{array}
$$

G.

G.

$$
\begin{array}{r}
1.6 \\
+4.1
\end{array}
$$

G.

G.

$$
\begin{array}{r}
3.1 \\
+\quad 1.8
\end{array}
$$

G.

$$
\begin{array}{r}
5.8 \\
+4.1
\end{array}
$$

G.

G.

G.

G.

G.

G.

G.

$$
\begin{array}{r}
0.3 \\
+0.6
\end{array}
$$

G.

G.

$$
\begin{array}{r}
6.4 \\
+3.3
\end{array}
$$

H.

$$
\begin{array}{r}
2.3 \\
+6.7
\end{array}
$$

H.
1.5

$$
+5.6
$$

H.

H.

$$
\begin{array}{r}
4.5 \\
+3.9
\end{array}
$$

H.

H.

H.

H.

$$
\begin{array}{r}
5.1 \\
+2.9
\end{array}
$$

H.

3.5 $+5.7$

H.

$$
\begin{array}{r}
4.1 \\
+4.9
\end{array}
$$

H.

$$
\begin{array}{r}
5.6 \\
+4.7
\end{array}
$$

H.

$$
\begin{array}{r}
6.9 \\
+3.2
\end{array}
$$

H.

$$
\begin{aligned}
& 8.8 \\
& 1.6
\end{aligned}
$$

H.

$$
\begin{array}{r}
3.5 \\
+6.6
\end{array}
$$

H.

$$
+6.8
$$

0.73 0.21

1.46
 $+$

9.82 0.01

0.31
 \square 8.22

1.50 2.46

2.31
 $+$

9.13 0.60

12.46
 $+$

23.20 $+$ 6.04

1.71 4.10

0.88 1.01

3.63

10.13 10.26

9.34 2.44

5.60
 $+$

6.31
 $+$ 3.08

10.33 $+0.55$

2.56 3.45

5.45
 $+$ 3.78

3.67 5.25

6.14

4.71
 \square 3.89

2.84 6.16

14.80
 \square 6.96

7.83
 6.99

8.95
 $+$
 9.80

12.80 $+46.93$

3.14

7.21 4.66

5.44
 $+$ 2.08

9.66 1.67

8.33
 $+$

42.12
 $+$
 10.09

$$
\begin{array}{r}
30.15 \\
+\quad 2.6
\end{array}
$$

$+$

14.58
 1.4

10.2
 $+$

5.4

\ddagger

.64

10.21

5.6

17.72 +12.58

42.1 $+17.96$

8.3
 9.31

十

+

4.9 $+$

$+$

$+$

 8.83

Module 6: Addition of Rational Numbers

Vocabulary Cards

add/addition
addend
algorithm
computation
decimal
denominator
equal sign
equivalent
fraction
hundredths
improper fraction
join
least common multiple mixed number
multiple
numerator
ones
plus sign
regroup/trade/exchange
sum
tenths
together

add/addition

To put amounts together to find the sum or to increase a set.

To put amounts together

To increase a set
$3+2=5$

addend

Any numbers that are added together.

$$
6+2=8
$$

6 and 2 are addends

algorithm

A procedure or description of steps that can be used to solve a problem.

computation

The action used to solve a problem.

decimal

A number based on powers of ten.

denominator

The term in a fraction that tells the number of equal parts in a whole.

$$
2 / 3 \frac{2}{3} \quad \text { In these fractions, } 3 \text { is the denominator. }
$$

equal sign

The symbol that tells you that two sides of an equation are the same, balanced, or equal.

$$
\begin{aligned}
& 12+8=20 \\
= & \text { is the equal sign }
\end{aligned}
$$

equivalent

Two numbers that have the same value.

$$
\frac{1}{4}=\frac{2}{8} \quad \frac{2}{3}=\frac{8}{12}
$$

fraction

A number representing part of a whole or set.

$$
\begin{array}{lll}
\frac{3}{6} & \frac{10}{12} & \frac{8}{3}
\end{array}
$$

hundredths

The digit in representing $\frac{1}{100}$.
In the number 4.23, 3 is in the hundredths place.

improper fraction

Any fraction in which the numerator is greater than or equal to the denominator.

$$
\frac{9}{4} \quad \frac{17}{12} \quad \frac{10}{3}
$$

join

To add to an existing set.

least common multiple

The common multiple with the least value.

$$
\begin{aligned}
& 6: 6,12,18,24,30 \\
& 8: 8,16,24,32,40
\end{aligned}
$$

With multiples of $\mathbf{6}$ and 8, the least common multiple is 24.

mixed number

A whole number and a fraction combined.

$$
1 \frac{1}{6}
$$

$$
4 \frac{5}{12}
$$

$$
12 \frac{4}{3}
$$

multiple

The product of a number and any integer.

$$
4: 4,8,12,16,20
$$

numerator

The term in a fraction that tells how many parts in a fraction.
$2 / 3 \frac{2}{3} \quad$ In these fractions, 2 is the numerator.

ones

The digit representing 1.
In the number 4.23, 4 is in the ones place.

plus sign

The symbol that tells you to add.

$$
5+4=9
$$

+ is the plus sign

regroup/trade/exchange

The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.

sum

The result of adding two or more numbers.

$$
7+2+1=10
$$

10 is the sum

tenths

The digit in representing $\frac{1}{10}$.
In the number 4.23, 2 is in the tenths place.

together

To combine sets or numbers.

